Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5410, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354816

RESUMO

The development of highly automated vehicles can meet elderly drivers' mobility needs; however, worse driving performance after a takeover request (TOR) is frequently found, especially regarding non-driving related tasks (NDRTs). This study aims to detect the correlation between takeover performance and underlying cognitive factors comprising a set of higher order cognitive processes including executive functions. Thirty-five young and 35 elderly participants were tested by computerized cognitive tasks and simulated driving tasks to evaluate their executive functions and takeover performance. Performance of n-back tasks, Simon tasks, and task switching were used to evaluate updating, inhibition, and shifting components of executive functions by principal component analysis. The performance of lane changing after TOR was measured using the standard deviation of the steering wheel angle and minimum time-to-collision (TTC). Differences between age groups and NDRT engagement were assessed by two-way mixed analysis of variance. Older participants had significantly lower executive function ability and were less stable and more conservative when engaged in NDRT. Furthermore, a significant correlation between executive function and lateral driving stability was found. These findings highlight the interaction between age-related differences in executive functions and takeover performance; thus, provide implications for designing driver screening tests or human-machine interfaces.


Assuntos
Função Executiva , Inibição Psicológica , Idoso , Automação , Humanos , Análise de Componente Principal , Tempo de Reação/fisiologia
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(3): 642-6, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23705424

RESUMO

NaYF4 : Yb, Er/rGO and SiO2-coated NaYF4 : Yb, Er/rGO nanocomposites can be prepared through "one-pot" and directly mixing preparation routes. Various measurement results show that the NaYF4 : Yb, Er in the nanocomposites exhibits a cubic a-type structure and nanoparticle-like morphology with a diameter range of 30-70 nm; the rGO layers are well-dispersed in the nanocomposites, and whereas the rGO obtained from "one-pot" preparation renders relatively better dispersion. Raman spectra demonstrate that there exists a surface coupling action between the two kinds of nanomaterials, and with the increase in the relative rGO content, such action becomes stronger. UC fluorescence measurement results reveal that the rGO has significantly quenching effect and optical-limiting performance on the UC fluorescence, particularly on the red-emission of the NaYFa : Yb, Er or SiO2-coated NaYF4 : Yb, Er nanoparticles. The red-emission intensity gradually decreases with an increase in the rGO content, but the green-emission shows less change. It should be stressed that, in comparison with NaYF4 : Yb, Er/rGO, with a similar rGO content, the red-emission intensity of SiO2-coated NaYF4 : Yb, Er/rGO decreases much obviously due to a stronger light-absorption caused by part rGO aggregation.

3.
J Chromatogr A ; 1284: 188-93, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23434083

RESUMO

A chiral recognition mechanism of ion-pair principle has been proposed in this study. It rationalized the enantioseparations of some basic analytes using the complex of di-n-butyl l-tartrate and boric acid as the chiral selector in methanolic background electrolytes (BGEs) by nonaqueous capillary electrophoresis (NACE). An approach of mass spectrometer (MS) directly confirmed that triethylamine promoted the formation of negatively charged di-n-butyl l-tartrate-boric acid complex chiral counter ion with a complex ratio of 2:1. And the negatively charged counter ion was the real chiral selector in the ion-pair principle enantioseparations. It was assumed that triethylamine should play its role by adjusting the apparent acidity (pH*) of the running buffer to a higher value. Consequently, the effects of various basic electrolytes including inorganic and organic ones on the enantioseparations in NACE were investigated. The results showed that most of the basic electrolytes tested were favorable for the enantioseparations of basic analytes using di-n-butyl l-tartrate-boric acid complex as the chiral ion-pair selector.


Assuntos
Aminas/isolamento & purificação , Ácidos Bóricos/química , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Tartaratos/química , Aminas/análise , Hidróxido de Amônia , Soluções Tampão , Eletrólitos/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Modelos Químicos , Hidróxido de Sódio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...